首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25227篇
  免费   4052篇
  国内免费   2439篇
化学   17621篇
晶体学   306篇
力学   1560篇
综合类   109篇
数学   3100篇
物理学   9022篇
  2024年   11篇
  2023年   500篇
  2022年   561篇
  2021年   794篇
  2020年   1010篇
  2019年   1001篇
  2018年   817篇
  2017年   716篇
  2016年   1186篇
  2015年   1121篇
  2014年   1319篇
  2013年   1769篇
  2012年   2386篇
  2011年   2443篇
  2010年   1607篇
  2009年   1528篇
  2008年   1683篇
  2007年   1538篇
  2006年   1388篇
  2005年   1176篇
  2004年   850篇
  2003年   655篇
  2002年   623篇
  2001年   453篇
  2000年   445篇
  1999年   520篇
  1998年   435篇
  1997年   450篇
  1996年   464篇
  1995年   369篇
  1994年   315篇
  1993年   239篇
  1992年   233篇
  1991年   200篇
  1990年   169篇
  1989年   146篇
  1988年   97篇
  1987年   110篇
  1986年   92篇
  1985年   85篇
  1984年   49篇
  1983年   43篇
  1982年   35篇
  1981年   18篇
  1980年   11篇
  1979年   9篇
  1978年   6篇
  1976年   9篇
  1975年   11篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
21.
Abstract

Complexes of [CdL2(NO3)2]·1.5H2O and [Ag2(μ-L)2(NO3)2] were synthesized by the reactions of 2-p-methylphenyl-5-(2-pyridyl)-1,3,4-thiadiazole (L) with Cd(NO3)2·4H2O and AgNO3, respectively. Their structures were determined by single crystal X-ray diffraction. The photophysical property and thermal stability were characterized by FT???IR, UV???Vis absorption, fluorescence, and thermogravimetric analysis (TGA). Both complexes belong to the triclinic system with space group p???1. The central metal of [CdL2(NO3)2]·1.5H2O has a distorted octahedral geometry [CdN4O2], while two central Ag(I) atoms of [Ag2(μ-L)2(NO3)2] exhibit distorted tetrahedral geometries [AgN3O].  相似文献   
22.
Sun  Cui-Fang  Cheng  Zhi 《Mathematical Notes》2022,111(5-6):925-931
Mathematical Notes - Let $$\mathbb N$$ denote the set of all nonnegative integers, and let $$A\subseteq\mathbb N$$ . Let $$h,n\in\mathbb N$$ , $$h\ge 2$$ and $$r_h(A,n)=\#\{(a_1,\dots,a_h)\in...  相似文献   
23.
Over the past two decades, advanced materials with hollow interiors have received significant attention in materials research owing to their great application potential across a vast number of technological fields. Though with great difficulty, multi-shelled hollow metal–organic frameworks (MSHMs) have also been successfully synthesized in recent years. Herein, a rational shell-by-shell soft-templating protocol has been devised to fabricate highly uniform multi-shelled hollow cobalt-imidazole-based MOF (ZIF-67). For the first time, it has become possible to endow mesoporosity to this new type of functional material (i.e., mesoporous MOFs). When used as carrier materials in catalytic reactions, in principle, these mesoporous MSHMs with high surface area not only improve the dispersity of metal nanoparticles (NPs), but also efficiently facilitate the mass diffusion of the reactions, resulting in enhanced catalyst activity. Moreover, the obtained MSHMs/M nanocomposites serve as base-metal bifunctional catalysts for one-pot oxidation-Knoevenagel condensation cascade reaction, in which the MSHMs itself serves as a pristine active catalyst in addition to its role of catalyst support. The results demonstrate that excellent multifunctional catalysts can be achieved via preparing intrinsically microporous bulk MOFs into extrinsically mesoporous MSHMs which possess many structural merits that conventional bulk MOFs do not have.  相似文献   
24.
A single-polarization filter comprising a gold-coated photonic crystal fiber based on surface plasmon resonance is designed and investigated. The pattern matching and coupled polarization characteristics analyzed by the full-vector finite element method (FEM) and losses at 1,540 nm are achieved to 1,016.01739 dB/cm (x-pol core mode) and 33.81917 dB/cm (y-pol core mode). The crosstalk (CT) value of the 1,540 nm band is ?853.12653 dB for fiber length L=1,000μm and the bandwidth is 850 nm. The working wavelength of the filter ranges from 1,280 nm to 1,540 nm by varying the diameter of outer air holes (d1), the diameter of inner air holes (d4), the metal film thickness (t), as well as the liquid refractive index (n).  相似文献   
25.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
26.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
27.
28.
29.
Balanophora involucrata J. D. Hooker has been known to possess potential anti-inflammatory and antibacterial activities; however, its antiviral activity has not been evaluated so far. In order to find new neuraminidase inhibitors (NAIs), the neuraminidase (NA) inhibition activity of different B. involucrata extracts was evaluated. In this study, an in vitro NA inhibition assay was performed to identify which extract of B. involucrata exhibits (maximal) inhibitory activity against NA. Ultra high performance liquid chromatography/quadrupole time-of-flight–tandem mass spectroscopy (MS/MS) and molecular docking techniques were used to identify the specific compounds responsible for the anti-influenza activity of the extract, and to explore the potential natural NAIs. The ethyl acetate extract of B. involucrata exhibited significant inhibitory activity against NA with 50% inhibitory concentration (IC50) value of 159.5 μg/mL. Twenty compounds were identified according to the MS/MS spectra; among them two compounds (quercitrin and phloridzin) showed obvious inhibitory activity against NA, with IC50 of 311.76 and 347.32 μmol/L, respectively. This study suggested that B. involucrata can be a potential natural source of NAIs and may be useful in the fight against ferocious influenza viruses.  相似文献   
30.
Triple-negative breast cancer (TNBC) is considered to be aggressive based on its low overall survival and disease-free rates. Currently, there is no molecular-targeted therapy. The identification of a suitable biomarker is still a research focus for TNBC at the present time. Amino acid metabolism fulfills multiple important physiological roles in humans. Their metabolic abnormalities have been reported in numerous cancer studies and amino acid pathways may also be chemotherapeutic targets. This study reports the profiling analysis of amino acids in TNBC and non-TNBC cell lines for detecting biomarkers based on the strategy of N-phosphorylation labeling with liquid chromatography–tandem mass spectrometry (LC–MS). Glutamine (Gln) was found to be significantly down-regulated in TNBC cells because it was largely absorbed and consumed in the TNBC cell lines. These results indicate faster proliferation of TNBC and higher consumption of glutamine to meet the material and energy demand, suggesting its potential role in TNBC progression. Hence, glutamine may be regarded as a biomarker and Gln-targeted approaches may become a new therapeutic strategies for TNBC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号